Maternal Torso Signaling Controls Body Axis Elongation in a Short Germ Insect

نویسندگان

  • Michael Schoppmeier
  • Reinhard Schröder
چکیده

In the long germ insect Drosophila, all body segments are determined almost simultaneously at the blastoderm stage under the control of the anterior, the posterior, and the terminal genetic system . Most other arthropods (and similarly also vertebrates) develop more slowly as short germ embryos, where only the anterior body segments are specified early in embryogenesis. The body axis extends later by the sequential addition of new segments from the growth zone or the tail bud . The mechanisms that initiate or maintain the elongation of the body axis (axial growth) are poorly understood . We functionally analyzed the terminal system in the short germ insect Tribolium. Unexpectedly, Torso signaling is required for setting up or maintaining a functional growth zone and at the anterior for the extraembryonic serosa. Thus, as in Drosophila, fates at both poles of the blastoderm embryo depend on terminal genes, but different tissues are patterned in Tribolium. Short germ development as seen in Tribolium likely represents the ancestral mode of how the primary body axis is set up during embryogenesis. We therefore conclude that the ancient function of the terminal system mainly was to define a growth zone and that in phylogenetically derived insects like Drosophila, Torso signaling became restricted to the determination of terminal body structures.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Developmental Evolution: Torso — a Story with Different Ends?

The Torso pathway patterns the ends of the Drosophila embryo. Now, it has been found to control axis elongation in the short germ insect Tribolium. This result raises the issue of the ancestral function of the Torso pathway and its evolution.

متن کامل

A context-dependent combination of Wnt receptors controls axis elongation and leg development in a short germ insect.

Short germ embryos elongate their primary body axis by consecutively adding segments from a posteriorly located growth zone. Wnt signalling is required for axis elongation in short germ arthropods, including Tribolium castaneum, but the precise functions of the different Wnt receptors involved in this process are unclear. We analysed the individual and combinatorial functions of the three Wnt r...

متن کامل

Double abdomen in a short-germ insect: Zygotic control of axis formation revealed in the beetle Tribolium castaneum

The distinction of anterior versus posterior is a crucial first step in animal embryogenesis. In the fly Drosophila, this axis is established by morphogenetic gradients contributed by the mother that regulate zygotic target genes. This principle has been considered to hold true for insects in general but is fundamentally different from vertebrates, where zygotic genes and Wnt signaling are requ...

متن کامل

Transcriptome sequencing reveals maelstrom as a novel target gene of the terminal system in the red flour beetle Tribolium castaneum.

Terminal regions of the Drosophila embryo are patterned by the localized activation of the Torso-RTK pathway, which promotes the downregulation of Capicua. In the short-germ beetle Tribolium, the function of the terminal system appears to be rather different, as the pathway promotes axis elongation and, in addition, is required for patterning the extra-embryonic serosa at the anterior. Here, we...

متن کامل

Wnt/β-catenin signaling integrates patterning and metabolism of the insect growth zone

Wnt/β-catenin and hedgehog (Hh) signaling are essential for transmitting signals across cell membranes in animal embryos. Early patterning of the principal insect model, Drosophila melanogaster, occurs in the syncytial blastoderm, where diffusion of transcription factors obviates the need for signaling pathways. However, in the cellularized growth zone of typical short germ insect embryos, sign...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Current Biology

دوره 15  شماره 

صفحات  -

تاریخ انتشار 2005